

BOSSTM Interaction with $CMON

White Paper

Cross-El Software Solutions

November 2001

�
Table of Contents

� TOC \o "1-3" \h \z �Introduction	� PAGEREF _Toc529611936 \h ��2�

What is $CMON	� PAGEREF _Toc529611937 \h ��2�

What does $CMON do?	� PAGEREF _Toc529611938 \h ��2�

Problems with $CMON	� PAGEREF _Toc529611939 \h ��2�

$CMON is not a standard product	� PAGEREF _Toc529611940 \h ��2�

$CMON is old technology	� PAGEREF _Toc529611941 \h ��2�

$CMON assumes TACL access	� PAGEREF _Toc529611942 \h ��2�

$CMON is a Security Risk	� PAGEREF _Toc529611943 \h ��2�

BOSS tm vs. $CMON	� PAGEREF _Toc529611944 \h ��2�

Conclusion	� PAGEREF _Toc529611945 \h ��2�

��
Introduction

As more customers are migrating to the BOSS tm and eBOSS Secure Internet Portal tm products for their secure front end needs, there is an number of customers who have the $CMON process installed on their systems. The $CMON process can coexist with the BOSS tm and eBOSS tm products, however there could be some conflicts depending on what the customers is using the $CMON process for.

What is $CMON

$CMON is a reserved process name used by the Non-Stop Kernel operating system. This process is used as a standard user exit that allows the end users to write their own login and process startup authentication. A $CMON process controls the following kinds of requests:

Command-interpreter configuration requests

Logon and logoff requests (LOGON and LOGOFF commands)

Attempts to change user passwords (PASSWORD and REMOTEPASSWORD commands)

Requests to create processes (implicit or explicit RUN commands)

Requests to change process priority (ALTPRI command)

Requests to add or delete users (ADDUSER and DELUSER commands)

What does $CMON do?

The $CMON process receives the requests noted above from a TACL processes by reading messages from its $RECEIVE file. $CMON processes each message and then sends a reply to the requesting TACL process. The $CMON process functions in the same way as any server process.

When replying to a command-interpreter request, $CMON can either accept the request, with or without modification, or reject the request and supply some display text giving the reason for the rejection. The $CMON process can either provide static replies that are hard coded into the $CMON program or perform run-time control, allowing the operator to set reply information such as the text displayed at logon or the set of processors that a process is able to run in.

Problems with $CMON

There are several disadvantages to using the $CMON methodology. A few of them are discussed below.

$CMON is not a standard product

$CMON is a standard process name not a standard product. Each customer who uses $CMON has a custom written program that uses the name $CMON, to control specific actions undertaken by a user running a TACL command interpreter. There is not one version of a $CMON process that is universal to all NSK systems.

$CMON is old technology

The $CMON methodology was the first attempt to help end users better secure their systems. There are now many standard products that perform the same functionality without the inherent risks associated with being unsupported custom software.

Compaq’s standard security product Safeguard and Cross-El Software Solutions BOSS tm family of products were developed to give the end user much better control of the systems than was possible with the $CMON methodology. Both of these products can be used to disallow the messages being sent to a $CMON process to prevent a user written process running as a $CMON process to override any rules previously set in the product.

$CMON assumes TACL access

In order for a $CMON process to be useful, the end user must have access to TACL and the $CMON process would be used to limit what that user could do with the TACL session. Products like BOSS tm allow access to applications based on user access rules set up in a database and do not depend on having system level access to a TACL process.

$CMON is a Security Risk

While $CMON was useful when there was nothing else, it has now became a security risk itself. Since $CMON is a reserved process name and not a product. A rouge process that uses the name of $CMON can be used to override any security procedures or practices. A programmer could start a process up with the name of $CMON that could grant SUPER.SUPER capabilities to himself without any auditing or tracking control as to what that user did with the SUPER.SUPER capabilities.

BOSS tm vs. $CMON

$CMON is a useful tool when used in the proper manner. However, it is generally a custom written program that is more susceptible to abuse than a standard security product.

BOSS tm is a standard product that uses a well-documented subsystem to set up the authentication and authorizations rules. This gives the user a much more flexible and robust control over who has access to what resources on your system.

BOSS tm does not depend on having TACL access to allow the operator to implement access and auditing requirements. The end user can access applications without having to have access to a TACL process thus eliminating the functionality that a $CMON process would provide.

The BOSS tm product gives a much more complete audit trail of who did what on the system, and can audit and control what commands can be accesses from each command interrupter that the user uses. This capably does not exist in a $CMON process.

Conclusion

All of the functionality of a $CMON process can be provided with an industry standard off the shelf software product called BOSS tm . This product will give better control and functionality than can be provided with a user written $CMON process. With all of the built-in features available now, BOSS tm will securely meet your enterprise needs.

