

CRYPT

File Encryption Program

and

CIPHER

File Encryption TACL Macro

07. June 2001

1234
Software & Consulting

Karl-Heinz Weber
Heinrichstraße 12

D-45711 Datteln/Horneburg

Document History 2nd Edition: 11Oct1999 Release CRYPT100
 3rd Edition: 07Jun2001 Release CRYPT200

Trademarks or The following are trademarks or service marks of Tandem Computers
Service Marks Incorporated:

Atalla, Challenge/Response, Enform, Expand, Guardian, Guardian90, Inspect,
Multilan, NonStop, TACL, Tandem.
All brand names and product names are trademarks or registered trademarks of
their respective companies.

The following are trademarks or service marks of GreenHouse Software &
Consulting:
$ARROW, $AS, CRYSTAL, CURIOUS, FTPSERV-E, FUNCTRAC, MPWD,
MPWD-L, PASSYNC, SECMAN, SECOM, GSTK, SSTK.

The following are trademarks or service marks of Jelinek EDV:
SECMAIN

Copyright Copyright © 2004 by GreenHouse Software & Consulting. All rights reserved.

No part of this document may be reproduced in any form, including photo
copying or translation to another language, without prior written consent of
GreenHouse Software & Consulting.
Printed in Germany.

Please Comment If you have questions or problems concerning the content of this

document, please let me know! Send your comments to:
GreenHouse Software & Consulting
Karl-Heinz Weber
Heinrichstraße 12
D-45711 Datteln/Horneburg
Germany
Phone +49 (0)2363 72566
Fax +49 (0)2363 66106
Mobile +49 (0)172 23 18248
E-Mail: Info@GreenHouse.de
Internet: www.GreenHouse.de
PGP fingerprint: 3A32 D90A D125 5418

1150 2484 6629 2DD2

www.GreenHouse.de

CRYPT & CIPHER

1. Introduction
Why should one encrypt data?

"Just because you're paranoid doesn't mean they aren't out to get you"
-- anonymous

2. CRYPT - File Encryption Program
CRYPT is a program which encrypts and decrypts files using the Data Encryption Algorithm
(DEA a.k.a. DES).

2.1. INVOCATION
CRYPT for help

CRYPT /IN <infile>, OUT <outfile>/ [[$]<phrase>[!]]

where <phrase> = 5 to 80 character phrase (blanks allowed)
 $ = Shared Access
 ! = Batch Mode (from TACL, etc.)
<infile> may NOT = <outfile> and <outfile> CANNOT exist.

WARNING

1) If you forget the phrase used to encrypt a file, there is
no computationally feasible way to decrypt the file.

2) If your user id changes, you will be unable to decrypt
files unless they were encrypted with the $ option.

WARNING

2.2. OPTIONS

2.2.1. $ - Shared Access
If you wish to send an encrypted file to another user, use the $<phrase> option,
indicating shared access. Since a file encrypted with the $ option is slightly less
secure, recipients of such a file are advised to decrypt the file and reencrypt it
with a new phrase. There is, however, no indication in the encrypted file that it
was encrypted with the $ option, thus preventing the unscrupulous from
searching for such files on a system and doing a dictionary attack.

No provision is made for transmitting the phrase to the ultimate destination.
This may be done by phone, secure mail, etc.

Using the $ modifier simply means, that the crypt key, derived from the pass
phrase, is NOT ‘bound’ to the users ID.

Page 1 of 6

CRYPT & CIPHER

2.2.2. ! - Batch Mode
This mode is provided to enable CRYPT to be invoked from TACL macros,
etc. "!" signals CRYPT to not recheck the phrase.

2.3. INSTALLATION
CRYPT must be named CRYPT and reside on $SYSTEM.SYSTEM.
The security vector should be “OOAO” or equivalent.
The owner should be a trusted person.

2.4. FILE TYPES
CRYPT encrypts any file type to an Entry-Sequenced file of code 7172.

2.5. SECURITY SETTINGS
Security settings are replicated. i.e. the security setting of the output file is identical to
that of the input file. This is true for GUARDIAN as well as SAFEGUARD access
control lists.
Reminder: In case the SAFEGUARD ACL of the IN file is PERSISTENT set to ON,
then the newly created OUT file gets a PERSISTENT ACL!

2.6. FILE ACCESS RESTRICTIONS
Access restrictions to files are enforced by Guardian or Safeguard, whichever is active.
Thus you can encrypt any file for which you have read access.

2.7. Performance
A K122 (32 MB memory, 1 GB disks on MFC), running the accelerated version of
CRYPT, has a throughput of one MB in approximately 35 seconds.

A S7000 (128 MB memory, 8 GB disks on Servernet), running the accelerated version
of CRYPT, needs about 11 seconds to process one MB.

The length of the pass phrase does not change these numbers.

2.8. Runtime Parameters
CRYPT does NOT run in a HIGH PIN, but is does accept HighRequesters.

Page 2 of 6

CRYPT & CIPHER

3. CIPHER - File Encryption TACL Macro
CIPHER is an example of a TACL macro to drive CRYPT to encrypt/decrypt a file in place.
It comes along with CRYPT.

3.1. INVOCATION
CIPHER for help

CIPHER <file> [[$]<phrase>]

3.2. BEWARE
Since there are a few more security problems with TACL macros than there are with
programs, one should be prudent and copy CIPHER into one's default volume or clearly
understand the implications of one's PMSEARCHLIST.
(Beware of gifts bearing Greeks)

3.3. THOUGHTS FOR THE USER
It would be easy to build similar macros to do such things as:
• reencrypt all encrypted files in a subvolume
• encrypt all unencrypted files in a subvolume
• decrypt all encrypted files in a subvolume
• encrypt all edit type files in a subvolume
• all of the above with a template

Page 3 of 6

CRYPT & CIPHER

3.4. CIPHER TACL Macro:
?TACL Macro
===
== ==
== CRYPT (200) - T7172G06 - (07Jun2001) ==
== Copyright (c) GreenHouse Software & Consulting 1999,2000 ==
== ==
===
== CIPHER ==
== ==
== CIPHER <file> [[$]<phrase>] ==
== ==
== An example TACL macro to encrypt/decrypt a file in place. ==
== ==
== Note: There are security problems with this macro because ==
== the user cannot be sure that there are no Trojan Horses. ==
== (Beware of gifts bearing Greeks). ==
== ==
== To be safe, a copy should also reside in the user's ==
== default subvolume to cover PMSEARCHLIST variations. ==
===
#frame
#push infile == name of file to encrypt/decrypt
#push outfile == output file for crypt
#push phrase == phrase
#push phrase_sz == length(phrase) in bytes
#push pcheck == phrase check (used if encrypting)
#push pcheck_sz == length(pcheck) in bytes
===
[#def get_phrase_sz delta |body|
 Gphrase$ == get phrase
 ZJ -1D == get rid of EOL
 ZUphrase_sz$ == save length of phrase in phrase_sz
]{end_def}
===
[#def get_pcheck_sz delta |body|
 Gpcheck$ == get pcheck
 ZJ -1D == get rid of EOL
 ZUpcheck_sz$ == save length of pcheck in pcheck_sz
]{end_def}
===
[#def check_phrase delta |body| {results in 0 (false) or 1 (true)}
 Gphrase$ == get the phrase (expected)
 ZJ -1D == get rid of EOL
 ZFUl$ == save length of phrase
 Gpcheck$ == append the phrase check string to end of buffer
 0J == start at beginning of buffer
 I1$ == assume result will be true
 Ql$ < == compare 1st half to 2nd half
 1+Ql$A FUc$ == save 1st char of actual in 'c'
 A-Qc$?N == if 1st of expected <> 1st of actual,
 0J I0$ == set false
 0@; == & exit compare loop
 ' == end of single character compare
 FOc$ == get rid of the temporary variable
 1C == point to next character in expected
 > == end of compare loop
 1,ZK == result is in the first character

Page 4 of 6

CRYPT & CIPHER

 FOl$ == get rid of the temporary variable
]{end_def}
==
#set outfile cf
[#loop |while| [#fileinfo/existence/ [outfile]] |do|
 #set outfile [outfile]x
 [#if [#match cfxxxxxx [outfile]] |then|
 #output Unable to generate outfile name
 #return
]
]
#set infile %1%
[#if [#emptyv infile] |then|
 #output
 #output CRYPT (200) - T7172G06 - (07Jun2001)");
 #output Copyright (c) GreenHouse Software & Consulting
1999,2001");
 #output
 #output **
 #output * No file specified. *
 #output * Form is: cipher filename <<$>phrase> *
 #output * where <> = optional parameters *
 #output * $ = shared access *
 #output ********************** WARNINGS **********************
 #output * *
 #output * If you forget the phrase used to encrypt a file, *
 #output * there is no computationally feasible way to *
 #output * decrypt the file. *
 #output * *
 #output * If your user id changes, you will be unable to *
 #output * decrypt files unless they were encrypted with *
 #output * the $ option. *
 #output * *
 #output ********************** WARNINGS **********************
|else|
 [#if [#fileinfo/existence/ [infile]] |then|
 #set phrase %2% %3% %4% %5% %6% %7% %8% %9% %10%
 [#if [#emptyv phrase] |then|
 #set phrase [#input /noecho/ Enter Phrase:]
]
 [#if [#compute 7172 <> [#fileinfo/code/ [infile]]] |then|
 #set pcheck [#input /noecho/ Reenter Phrase:]
 sink [#delta /commands get_phrase_sz/]
 sink [#delta /commands get_pcheck_sz/]
 [#if [#compute [phrase_sz] <> [pcheck_sz]
 or [#delta /commands check_phrase/] = 0] |then|
 #output Phrase does not match
 |else|
 CRYPT /in [infile], out [outfile]/ [phrase]!
 [#if [#fileinfo/existence/ [outfile]] |then|
 sink [#purge [infile]]
 RENAME [outfile],[infile]
 #output [infile] encrypted
 |else|
 #output Encryption Failure
]
]
 |else|
 CRYPT /in [infile], out [outfile]/ [phrase]!
 [#if [#fileinfo/existence/ [outfile]] |then|

Page 5 of 6

CRYPT & CIPHER

 sink [#purge [infile]]
 RENAME [outfile],[infile]
 #output [infile] decrypted
 |else|
 #output Decryption Failure
]
]
 |else|
 #output [infile] does not exist
]
]
#unframe

Page 6 of 6

	Crypt.pdf
	Crypt.pdf
	Introduction
	CRYPT - File Encryption Program
	INVOCATION
	OPTIONS
	$ - Shared Access
	! - Batch Mode

	INSTALLATION
	FILE TYPES
	SECURITY SETTINGS
	FILE ACCESS RESTRICTIONS
	Performance
	Runtime Parameters

	CIPHER - File Encryption TACL Macro
	INVOCATION
	BEWARE
	THOUGHTS FOR THE USER
	CIPHER TACL Macro:

